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Abstract. Available methods for structural model updating are employed to develop high fi-
delity models of the Metsovo bridge using ambient vibration measurements. The Metsovo 
bridge, the highest bridge of the Egnatia Odos Motorway, is a two-branch balanced cantile-
ver ravine bridge. It has a total length of 357m, a very long central span of 235m, and a 
height of 110m for the taller pier. Ambient vibration measurements are available during dif-
ferent construction phases of the bridge. Operational modal analysis software is used to ob-
tain the modal characteristics of the bridge. The modal characteristics are then used to 
update two model classes of finite element models of the bridge. These model classes are 
based on beam and solid elements. A multi-objective structural identification method is used 
for estimating the parameters of the finite element structural models based on minimising the 
modal residuals. The method results in multiple Pareto optimal structural models that are 
consistent with the measured modal data and the modal residuals used to measure the dis-
crepancies between the measured modal values and the modal values predicted by the model. 
Single objective structural identification methods are also evaluated as special cases of the 
proposed multi-objective identification method. The effectiveness of the updated models from 
the two model classes and their predictive capabilities are assessed. It is demonstrated that 
the Pareto optimal structural models may vary considerably, depending on the fidelity of the 
model classes employed and the size of measurement errors.  
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1 INTRODUCTION 
Structural model updating methods have been proposed in the past to reconcile mathemati-

cal models, usually discretized finite element models, with experimental data. The estimate of 
the optimal model from a parameterized class of models is sensitive to uncertainties that are 
due to limitations of the mathematical models used to represent the behavior of the real struc-
ture, the presence of measurement and processing error in the data, the number and type of 
measured modal or response time history data used in the reconciling process, as well as the 
norms used to measure the fit between measured and model predicted characteristics. The op-
timal structural models resulting from such methods can be used for improving the model re-
sponse and reliability predictions [1], structural health monitoring applications [2-5] and 
structural control [6]. 

Structural model parameter estimation problems based on measured data, such as modal 
characteristics (e.g. [2-5]) or response time history characteristics [7], are often formulated as 
weighted least-squares problems in which metrics, measuring the residuals between measured 
and model predicted characteristics, are build up into a single weighted residuals metric 
formed as a weighted average of the multiple individual metrics using weighting factors. 
Standard optimization techniques are then used to find the optimal values of the structural pa-
rameters that minimize the single weighted residuals metric representing an overall measure 
of fit between measured and model predicted characteristics. Due to model error and meas-
urement noise, the results of the optimization are affected by the values assumed for the 
weighting factors.  

The model updating problem has also been formulated in a multi-objective context [8] that 
allows the simultaneous minimization of the multiple metrics, eliminating the need for using 
arbitrary weighting factors for weighting the relative importance of each metric in the overall 
measure of fit. The multi-objective parameter estimation methodology provides multiple 
Pareto optimal structural models consistent with the data and the residuals used in the sense 
that the fit each Pareto optimal model provides in a group of measured modal properties can-
not be improved without deteriorating the fit in at least one other modal group.  

Theoretical and computational issues arising in multi-objective identification have been 
addressed and the correspondence between the multi-objective identification and the weighted 
residuals identification has been established [9-10]. Emphasis was given in addressing issues 
associated with solving the resulting multi-objective and single-objective optimization prob-
lems. For this, efficient methods were also proposed for estimating the gradients and the Hes-
sians [11] of the objective functions using the Nelson’s method [12] for finding the 
sensitivities of the eigenproperties to model parameters.  

In this work, the structural model updating problem using modal residuals is formulated as 
single- and multi-objective optimization problems with the objective formed as a weighted 
average of the multiple objectives using weighting factors. Theoretical and computational is-
sues are then reviewed and the model updating methodologies are applied to update two dif-
ferent model classes of finite element models of the Metsovo bridge using ambient vibration 
measurements. Emphasis is given in investigating the variability of the Pareto optimal models 
from each model class.  

2 MODEL UPDATING BASED ON MODAL RESIDUALS 

Let 0( ) ( )ˆˆ{ , ,  1, , ,  1, , }Nk k
r r DD R r m kω φ= ∈ = = N  be the measured modal data from a 

structure, consisting of modal frequencies  and modeshape components  ( )ˆ k
rω

( )ˆ k
rφ  at  meas-

ured degrees of freedom (DOF), where m  is the number of observed modes and 
0N

DN  is the 
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number of modal data sets available. Consider a parameterized class of linear structural mod-
els used to model the dynamic behavior of the structure and let NR θθ ∈  be the set of free 
structural model parameters to be identified using the measured modal data. The objective in a 
modal-based structural identification methodology is to estimate the values of the parameter 
set θ  so that the modal data { ( ),  ( ) , 1, , }dN

r r R rω θ φ θ ∈ = m , where  is the number of 
model DOF, predicted by the linear class of models best matches, in some sense, the experi-
mentally obtained modal data in . For this, let  

dN

D

 
2 2 ˆ( ) ( )( )( )       and      ( ) ˆˆr r

r r rr r

r

L
ω φ

β θ φ θ φω θ ωε θ ε θ
ω φ

−
= =

m

2

ˆ

r

−          (1) 

1, ,r = , be the measures of fit or residuals between the measured modal data and the 
model predicted modal data for the r -th modal frequency and modeshape components, re-
spectively, where 2 T|| ||z z= z  is the usual Euclidean norm, and 

2ˆ( ) ( ) / ( )T
r r r rL Lβ θ φ φ θ φ θ=  

is a normalization constant that guaranties that the measured modeshape ˆ
rφ  at the measured 

DOFs is closest to the model modeshape ( ) ( )r rLβ θ φ θ  predicted by the particular value of θ . 

The matrix  is an observation matrix comprised of zeros and ones that maps the 
 model DOFs to the  observed DOFs. 

0 dN NL R ×∈
dN 0N
In order to proceed with the model updating formulation, the measured modal properties 

are grouped into two groups [10]. The first group contains the modal frequencies while the 
second group contains the modeshape components for all modes. For each group, a norm is 
introduced to measure the residuals of the difference between the measured values of the mo-
dal properties involved in the group and the corresponding modal values predicted from the 
model class for a particular value of the parameter set θ . For the first group the measure of fit 

1( )J θ  is selected to represent the difference between the measured and the model predicted 
frequencies for all modes. For the second group the measure of fit 2 ( )J θ  is selected to repre-
sents the difference between the measured and the model predicted modeshape components 
for all modes. Specifically, the two measures of fit are given by 

       2
1 2

1 1

( ) ( )      and      ( ) ( )
r

m m

r r

J Jωθ ε θ θ ε
= =

=∑ 2
rφ
θ=∑  (2) 

The aforementioned grouping scheme is used in the next subsections for demonstrating the 
features of the proposed model updating methodologies. 

2.1 Multi-objective identification  

The problem of identifying the model parameter values θ  that minimize the modal or re-
sponse time history residuals can be formulated as a multi-objective optimization problem 
stated as follows [8]. Find the values of the structural parameter set θ  that simultaneously 
minimizes the objectives 

 1 2( ) ( ( ), ( ))y J J Jθ θ= = θ           (3) 

subject to parameter constrains low upperθ θ θ≤ ≤ , where 1( , , )Nθ
θ θ θ= ∈Θ  is the parameter 

vector,  is the parameter space, Θ 1( , , )ny y y Y= ∈  is the objective vector, Y  is the objec-
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tive space and lowθ  and upperθ  are respectively the lower and upper bounds of the parameter 
vector . For conflicting objectives 1( )J θ  and 2 ( )J θ  there is no single optimal solution, but 
rather a set of alternative solutions, known as Pareto optimal solutions, that are optimal in the 
sense that no other solutions in the parameter space are superior to them when both objectives 
are considered. The set of objective vectors ( )y J θ=  corresponding to the set of Pareto op-
timal solutions θ  is called Pareto optimal front. The characteristics of the Pareto solutions are 
that the residuals cannot be improved in one group without deteriorating the residuals in the 
other group.  

The multiple Pareto optimal solutions are due to modelling and measurement errors. The 
level of modelling and measurement errors affect the size and the distance from the origin of 
the Pareto front in the objective space, as well as the variability of the Pareto optimal solu-
tions in the parameter space. The variability of the Pareto optimal solutions also depends on 
the overall sensitivity of the objective functions or, equivalently, the sensitivity of the modal 
properties, to model parameter values θ .  Such variabilities were demonstrated for the case of 
two-dimensional objective space and one-dimensional parameter space in the work by Chris-
todoulou and Papadimitriou [9].  

2.2 Weighted modal residuals identification 
The parameter estimation problem is traditionally solved by minimizing the single objec-

tive 

 1 1 2 2( ; ) ( ) ( )J w w J w Jθ θ= + θ           (4) 

formed from the multiple objectives ( )iJ θ  using the weighting factors , , with 
. The objective function 

0iw ≥ 1,2i=

1 2 1w w+ = ( ; )J wθ  represents an overall measure of fit between the 
measured and the model predicted characteristics. The relative importance of the residual er-
rors in the selection of the optimal model is reflected in the choice of the weights. The results 
of the identification depend on the weight values used. Conventional weighted least squares 
methods assume equal weight values, 1 2 1 2w w= = . This conventional method is referred 
herein as the equally weighted modal residuals method.  

The single objective is computationally attractive since conventional minimization algo-
rithms can be applied to solve the problem. However, a severe drawback of generating Pareto 
optimal solutions by solving the series of weighted single-objective optimization problems by 
uniformly varying the values of the weights is that this procedure often results in cluster of 
points in parts of the Pareto front that fail to provide an adequate representation of the entire 
Pareto shape. Thus, alternative algorithms dealing directly with the multi-objective optimiza-
tion problem and generating uniformly spread points along the entire Pareto front should be 
preferred. Formulating the parameter identification problem as a multi-objective minimization 
problem, the need for using arbitrary weighting factors for weighting the relative importance 
of the residuals ( )iJ θ  of a modal group to an overall weighted residuals metric is eliminated. 
An advantage of the multi-objective identification methodology is that all admissible solu-
tions in the parameter space are obtained. Special algorithms are available for solving the 
multi-objective optimization problem. Computational algorithms and related issues for solv-
ing the single-objective and the multi-objective optimization problems are briefly discussed in 
the next Section. 
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3 COMPUTATIONAL ISSUES IN MODEL UPDATING  

The proposed single and multi-objective identification problems are solved using available 
single- and multi-objective optimization algorithms. These algorithms are briefly reviewed 
and various implementation issues are addressed, including estimation of global optima from 
multiple local/global ones, as well as convergence problems. 

3.1 Single-objective identification  

The optimization of ( ; )J wθ  in (4) with respect to θ  for given w  can readily be carried 
out numerically using any available algorithm for optimizing a nonlinear function of several 
variables. These single objective optimization problems may involve multiple local/global 
optima. Conventional gradient-based local optimization algorithms lack reliability in dealing 
with the estimation of multiple local/global optima observed in structural identification prob-
lems [9,13], since convergence to the global optimum is not guaranteed. Evolution strategies 
(ES) [14] are more appropriate and effective to use in such cases. ES are random search algo-
rithms that explore better the parameter space for detecting the neighborhood of the global 
optimum, avoiding premature convergence to a local optimum. A disadvantage of ES is their 
slow convergence at the neighborhood of an optimum since they do not exploit the gradient 
information. A hybrid optimization algorithm should be used that exploits the advantages of 
ES and gradient-based methods. Specifically, an evolution strategy is used to explore the pa-
rameter space and detect the neighborhood of the global optimum. Then the method switches 
to a gradient-based algorithm starting with the best estimate obtained from the evolution strat-
egy and using gradient information to accelerate convergence to the global optimum. 

3.2 Multi-Objective Identification 

The set of Pareto optimal solutions can be obtained using available multi-objective optimi-
zation algorithms. Among them, the evolutionary algorithms, such as the strength Pareto evo-
lutionary algorithm [15], are well-suited to solve the multi-objective optimization problem. 
The strength Pareto evolutionary algorithm, although it does not require gradient information, 
it has the disadvantage of slow convergence for objective vectors close to the Pareto front [8] 
and also it does not generate an evenly spread Pareto front, especially for large differences in 
objective functions. 

Another very efficient algorithm for solving the multi-objective optimization problem is 
the Normal-Boundary Intersection (NBI) method [16]. It produces an evenly spread of points 
along the Pareto front, even for problems for which the relative scaling of the objectives are 
vastly different. The NBI optimization method involves the solution of constrained nonlinear 
optimization problems using available gradient-based constrained optimization methods. The 
NBI uses the gradient information to accelerate convergence to the Pareto front.   

3.3 Computations of gradients  
In  order to guarantee the convergence of the gradient-based optimization methods for 

structural models involving a large number of DOFs with several contributing modes, the 
gradients of the objective functions with respect to the parameter set θ  has to be estimated 
accurately. It has been observed that numerical algorithms such as finite difference methods 
for gradient evaluation does not guarantee convergence due to the fact that the errors in the 
numerical estimation may provide the wrong directions in the search space and convergence 
to the local/global minimum is not achieved, especially for intermediate parameter values in 
the vicinity of a local/global optimum. Thus, the gradients of the objective functions should 
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be provided analytically. Moreover, gradient computations with respect to the parameter set 
using the finite difference method requires the solution of as many eigenvalue problems as the 
number of parameters.  

The gradients of the modal frequencies and modeshapes, required in the estimation of the 
gradient of ( ; )J wθ  in (4) or the gradients of the objectives ( )iJ θ  in (3) are computed by ex-
pressing them exactly in terms of the modal frequencies, modeshapes and the gradients of the 
structural mass and stiffness matrices with respect to θ  using Nelson’s method [12]. Special 
attention is given to the computation of the gradients and the Hessians of the objective func-
tions for the point of view of the reduction of the computational time required. Analytical ex-
pressions for the gradient of the modal frequencies and modeshapes are used to overcome the 
convergence problems. In particular, Nelson’s method [12] is used for computing analytically 
the first derivatives of the eigenvalues and the eigenvectors. The advantage of the Nelson’s 
method compared to other methods is that the gradient of the eigenvalue and the eigenvector 
of one mode are computed from the eigenvalue and the eigenvector of the same mode and 
there is no need to know the eigenvalues and the eigenvectors from other modes. For each pa-
rameter in the set θ  this computation is performed by solving a linear system of the same size 
as the original system mass and stiffness matrices. Nelson’s method has also been extended to 
compute the second derivatives of the eigenvalues and the eigenvectors. 

The formulation for the gradient and the Hessian of the objective functions are presented in 
references [11, 17]. The computation of the gradients and the Hessian of the objective func-
tions is shown to involve the solution of a single linear system, instead of  linear systems 
required in usual computations of the gradient and  linear systems required in the 
computation of the Hessian. This reduces considerably the computational time, especially as 
the number of parameters in the set 

Nθ

( 1N Nθ θ + )

θ  increase.  

4 APPLICATION TO METSOVO BRIDGE 

4.1 Description of Metsovo bridge and instrumentation 
The new under construction ravine bridge of Metsovo (Figure 1, November 2008), in sec-

tion 3.2 (Anthohori tunnel-Anilio tunnel) of Egnatia Motorway, is crossing the deep ravine of 
Metsovitikos river, 150 m over the riverbed. This is the higher bridge of Egnatia Motorway, 
with the height of the taller pier M2 equal to 110 m. The total length of the bridge is 357 m. 
As a consequence of the strong  inequality of the heights of the two basic piers of the bridge, 
Μ2 and M3 (110 m to 35 m), the very long central span of 235 m, is even longer during con-
struction, as the pier M2 balanced cantilever is 250 m long, due to the eccentrical position of 
the key segment. The key of the central span is not in midspan due to the different heights of 
the superstructure at its supports to the adjacent piers (13.0 m in pier Μ2 and 11.50 m in pier 
M3) for redistributing mass and load in favor of the short pier M3 and thus relaxing strong 
structural abnormality. The last was the main reason of this bridge to be designed to resist 
earthquakes fully elastic (q factor equal to 1). The longitudinal section of the left branch of 
Metsovo ravine bridge is shown in Figure 2. 

The bridge has 4 spans of length 44.78 m /117.87 m /235.00 m/140.00 m and three piers  
of  which  Μ1, 45 m  high,  supports  the  boxbeam  superstructure through pot bearings 
(movable in both horizontal directions), while Μ2, Μ3 piers connect monolithically to the su-
perstructure. The bridge was being constructed by the balanced cantilever method of construc-
tion and according to the constructional phases shown in Figures 3(a) and 3(b). The total 
width of the deck is 13.95 m, for each carriageway. The superstructure is limited prestressed 

 6



Panagiotis Panetsos, Evangelos Ntotsios, Nikolaos-Aggelos Liokos and Costas Papadimitriou 
 
of single boxbeam section, of height varying from the maximum 13.5 m in its support to pier 
M2 to the minimum 4.00 m in key section.  

 

 
Figure 1: General view of Metsovo ravine bridge.  

 
 

 
Figure 2: Longitudinal section of Metsovo ravine bridge of Egnatia Motorway. 

The pier M3 balanced cantilever was instrumented after the construction of all its segments 
and before the construction of the key segment that will join with the balanced cantilever of 
pier M2 (Figure 3). The total length of M3 cantilever was at the time of its instrumentation 
215 m while its total height is 35 m. Piers Μ2, Μ3 are founded on huge circular Ø12.0 m rock 
sockets in the steep slopes of the ravine of the Metsovitikos river,  in a depth of 25 m and 15 
m, respectively. 
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Figure 3: Views of under construction Metsovo ravine bridge, (a) General view, (b) key of central span. 

Six uniaxial accelerometers were installed inside the box beam cantilever M3 of the left 
carriageway of Metsovo ravine bridge. The accelerometer arrays, are shown in Figure 4. Due 
to the symmetry of the construction method (balanced cantilevering) and as the same number 
of segments were completed on both sides of pier M3, the instrumentation was limited to the 
right cantilever of pier M3, following two basic arrangements. According to the 1st arrange-
ment two (2) sensors were supported on the head of pier M3, one measuring longitudinal and 
the other transverse accelerations (Μ3L, Μ3T), while the remaining four (4) accelerometers 
were supported on the right and the left internal sides of the box beam’s  webs , two (2) dis-
tant  46m and two (2) distant 68m from M3 axis, respectively (LV3, RV4, LV5, RV6). All 
four were measuring vertical acceleration. According to the 2nd arrangement the last two sen-
sors of the 1st arrangement were fixed in a section near the cantilever edge, distant 93m from 
M3 axis, while the other four remain in the same positions. In both arrangements the sixth 
sensor was adjusted to alternatively measure both in vertical and in transverse horizontal di-
rection (RV6 or RT6). 
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Figure 4: Accelerometer installation arrangements. 
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4.2 Modal identification  

The response of the cantilever structure subjected to ambient loads such as the wind, and 
loads induced by construction activities such as the crossing of light vehicles placing the 
prestressing cables inside the tendon tubes, was as expected of very low intensity (0,6% of the 
acceleration of gravity). From acceleration response time histories, measured from the 6 chan-
nel arrays, the cross power spectral density (CPSD) functions were estimated and used to es-
timate the modal properties using the Modal Identification Toolbox (MITool) [18] developed 
by the System Dynamics Laboratory in the University of Thessaly. All the basic modal fre-
quencies, modal damping ratios and modeshape components of the bridge were identified. 

The identified values of the modal frequencies, their type and the corresponding values of 
the damping ratios are shown in Table 1. The modal damping ratios reported in Table 1 show 
that the values of damping are of the order of 0.2% to 2.9%. Due to the small number of 
available sensors (six) the type of some of the modeshapes were not identified with confi-
dence. The first six identified modeshapes are presented in Figure 5. The arrows are placed in 
measuring points and their length is proportional to the respective value of the normalized 
modal component. The accuracy in the estimation of the modal characteristics is shown in 
Figure 6 comparing the measured with the modal model predicted CPSD. As it is seen, the fit 
of the measured power spectral density is very good which validates the effectiveness of the 
proposed modal identification software based on ambient vibrations. 

 
 

No Identified Modes Hz Damping  % FEM (beam) FEM (solid) 
1 1st rotational, z axis 0.15 2.93 0.15 0.16 
2 1st longitudinal 0.30 0.18 0.28 0.29 
3 1st transverse 0.62 0.43 0.58 0.61 
4 2nd longitudinal 0.68 0.42 0.62 0.66 
5 1st bending (deck) 0.90 0.25 0.73 0.97 
6 2nd transverse 1.30 0.40 1.30 1.39 
7 transverse 1.46 0.47 - - 
8 2nd bending (deck) 2.28 0.47 2.56 2.44 
9 2nd rotational, z axis 2.58 0.76 2.07 2.61 
10 3rd bending (deck) 3.23 0.40 3.58 3.43 
11 3rd  transverse 4.63 0.32 3.88 4.61 
12 1st rotational, x axis 4.94 0.47 5.72 5.77 
13 4th bending (deck) 5.95 1.33 7.12 6.40 

Table 1: Identified modes of the Metsovo ravine bridge 
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Figure 5: The first six identified modeshapes of Metsovo bridge. 
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Figure 6: Comparison between measured and modal model predicted CPSD. 
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4.3 Updating of finite element model classes 

Initially, three different analytical dynamic models of the bridge cantilever M3 were con-
structed, using Euler beam elements representing material and geometry of the structure, as 
considered by the design. For bridge modeling the software package COMSOL Multiphysics 
[19] was used. Three dimension Euler beam finite elements were used for the construction of 
this model, coincided with the axis connecting the centoids of the deck and pier sections. For 
better graphical representation of the higher modeshapes, on the measured points of the bridge 
cantilever (positions of sensors), additional rigid transverse extensions of no mass were added  
to both sides of its centroid axis. For representing rigid connection of the superstructure to the 
pier, rigid elements of no mass were used. The beam model shown in Figure 7 has 306 de-
grees of freedom. Pier transverse webs were simulated by beam elements according to design 
drawings. For comparison purposes, Table 1 lists the values of the modal frequencies pre-
dicted by the nominal finite element beam model  constructed in the COMSOL Multiphysics 
software. Comparing with the identified modal frequency values it can be seen that the nomi-
nal FEM-based modal frequencies for the beam model are fairly close to the experimental 
ones.  

 
Figure 7: Dynamic model of cantilever Μ3 of Metsovo bridge with Euler beam finite elements.  

Next, detailed finite element models were created using three dimensional solid elements. 
For this the structure was first designed in CAD environment and then imported in COMSOL 
Multiphysics [19] modelling environment. The models were constructed based on the material 
properties and the geometric details of the structure. The finite element models for the bridge 
were created using three dimensional tetrahedron solid finite elements to model the whole 
structure. The entire simulation and the model updating is performed within the COMSOL 
Multiphysics modelling environment using Matlab-based model updating software designed 
by the System Dynamics Laboratory of the University of Thessaly.  

In order to investigate the sensitivity of the model error due to the finite element discretiza-
tion, several models were created decreasing the size of the elements in the finite element 
mesh. The resulted twelve finite element models consist of 6683 to 156568 triangular shell 
elements corresponding to 39291 to 886353 DOF. The convergence in the first six modefre-
quencies predicted by the finite element models with respect to the number of models DOF is 
given in Figure 8. According to the results in Figure 8, a model of 6683 finite elements having 
39291 DOF was chosen for the adequate modelling of the experimental vehicle. This model is 
shown in Figure 9 and for comparison purposes, Table 1 lists the values of the modal fre-
quencies predicted by the nominal finite element model. Comparing with the identified modal 
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frequency values it can be seen that the nominal FEM-based modal frequencies for the solid 
element model, are closer to the experimental ones than the values for the modal frequencies 
predicted by the beam model. Representative modeshapes predicted by the finite solid ele-
ment model are also shown in Figure 5 for the first six modes. 
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Figure 8. Relative error of the modal frequencies predicted by the finite element models with respect to the mod-

els’ number of degrees of freedom.  

 
 

Figure 9. Finite element model of Metsovo bridge consisted of 6683 three dimensional tetrahedron elements.  
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The two finite element models of Metsovo bridge were employed in order to demonstrate 
the applicability of the proposed finite element model updating methodologies, and point out 
issues associated with the multi-objective identification. Both models were parameterized us-
ing three parameters. The parameterization is shown in Figure 10. The first parameter θ  ac-
counts for the modulus of elasticity of the deck of the bridge, the second parameter θ  
accounts for the modulus of elasticity of the head of the pier M3 of the bridge, while the third 
parameter  accounts for the modulus of elasticity of the pier M3 of the bridge. The nominal 
finite element model corresponds to values of θ θ . The parameterized finite element 
model classes are updated using lowest five modal frequencies and modeshapes (modes 1 to 5 
in Table 1) obtained from the modal analysis, and the two modal groups with modal residuals 
given by 

1

2

θ3
θ= = =1 2 3 1

(2). 
 

 
Figure 10: Parameterization of finite element model classes of Metsovo bridge. 

  
The results from the multi-objective identification methodology for both beam and solid 

element models are shown in Figure 11. The normal boundary intersection algorithm was 
used to estimate the Pareto solutions. For each model class and associated structural configu-
ration, the Pareto front, giving the Pareto solutions in the two-dimensional objective space, is 
shown in Figure 11(a). The non-zero size of the Pareto front and the non-zero distance of the 
Pareto front from the origin are due to modeling and measurement errors. Specifically, the 
distance of the Pareto points along the Pareto front from the origin is an indication of the size 
of the overall measurement and modeling error. The size of the Pareto front depends on the 
size of the model error and the sensitivity of the modal properties to the parameter values θ  
[18]. Figures 11(b-d) show the corresponding Pareto optimal solutions in the three-
dimensional parameter space. Specifically, these figures show the projection of the Pareto so-
lutions in the two-dimensional para 1 2( ,θ θ 3)  and 2 3( , )θ θ . It should be 
noted that the equally weighted solution is also computed and is shown 

meter spaces , 
in Figure 11. 

) 1( ,θ θ

The optimal structural models corresponding to the equally weighted (EWM) residuals 
methods for the beam and the solid finite element model classes are also shown in Figure 9. It 
can be seen that these optimal models are points along the Pareto front, as it should be ex-
pected.  
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It is observed that a wide variety of Pareto optimal solutions are obtained for different 
structural configurations that are consistent with the measured data and the objective func-
tions used. The Pareto optimal solutions are concentrated along a one-dimensional manifold 
in the three-dimensional parameter space. Comparing the Pareto optimal solutions, it can be 
said that there is no Pareto solution that improves the fit in both modal groups simultaneously. 
Thus, all Pareto solutions correspond to acceptable compromise structural models trading-off 
the fit in the modal frequencies involved in the first modal group with the fit in the 
modeshape components involved in the second modal groups. 

Comparing the two different element models, the solid element model seems to be able to 
fit better to the experimental results and this is shown in Figure 11(a).  Specifically, for the 
higher fidelity model class of 6683 solid elements, the Pareto front moves closer to the origin 
of the objective space. In addition it is observed that the sizes of the Pareto fronts for the solid 
elements model classes reduce to approximately half the sizes of the Pareto fronts observed 
for the beam element model class. These results certify, as it should be expected based on the 
modeling assumptions, that the solid element model classes of 39291 DOF are higher fidelity 
model classes than the beam model classes of 306 DOF. Also the results in Figure 11(a) quan-
tify the quality of fit, acceptance and degree of accuracy of a model class in relation to an-
other model class based on the measure data.  
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Figure 9: Pareto front and Pareto optimal solutions for the three parameter model classes in the (a) objective 

space and (b-d) parameter space.  
 

The variability in the values of the model parameters for the beam element model class are 
of the order of 75%, 60% and 10% for ,  and  respectively. It should be noted that the 
Pareto solutions 16 to 20 form a one dimensional solution manifold in the parameter space 
that correspond to the non-identifiable solutions obtained by minimizing the second objective 

1θ 2θ 3θ
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function. The reason for such solutions to appear in the Pareto optimal set has been discussed 
in reference [10].  The variability in the values of the model parameters for the solid element 
model class are of the order of 12%, 155% and 43% for ,  and  respectively. From the 
results in Figure 9(b-d) one should also observe that the Pareto optimal values of the parame-
ters predicted by the solid finite element model class are significant different from the Pareto 
optimal values predicted by the simpler beam finite element model class. Thus, the model up-
dating results and parameter estimates depend highly on the fidelity of the model class con-
sidered.  

1θ 2θ 3θ

The percentage error between the experimental (identified) values of the modal frequencies 
and the values of the modal frequencies predicted by the three parameters beam element 
model for the nominal values of the parameters, the equally weighted solution and the Pareto 
optimal solutions 1, 5, 10, 15 and 20 are reported in Table 2. Table 3 reports the MAC values 
between the model predicted and the experimental modeshapes for the nominal, the equally 
weighted and the Pareto optimal models 1, 5, 10, 15 and 20. It is observed that for the modal 
frequencies the difference between the experimental values and the values predicted by the 
Pareto optimal model vary between 0.2% and 13.4%. Specifically, for the Pareto solution 1 
that corresponds to the one that minimizes the errors in the modal frequencies (first objective 
function), the modal frequency errors vary from 0.2% to 3.9%. Higher modal frequency errors 
are observed as one moves towards Pareto solution 20 since such solutions are based more on 
minimizing the errors in the modeshapes than the error in the modal frequencies. However, 
these errors from the Pareto solutions are significantly smaller than the errors observed for the 
nominal model which are as high as 20.1%. The MAC values between the experimental 
modeshapes and the modeshapes predicted by the Pareto optimal model are very close to one 
because of the small number of measured DOF available. The MAC values vary between 0.95 
and 0.99.  For the Pareto solution 20, the lowest MAC value is approximately 0.99.  

For the three parameters solid element model, the percentage error between the experimen-
tal values of the modal frequencies and the values of the modal frequencies predicted by the 
three parameter solid element model for the nominal values of the parameters, the equally 
weighted solution and the Pareto optimal solutions 1, 5, 10, 15 and 20 are reported in Table 4. 
Table 5 reports the MAC values between the model predicted and the experimental 
modeshapes for the nominal, the equally weighted and the Pareto optimal models 1, 5, 10, 15 
and 20. It is observed that for the modal frequencies the difference between the experimental 
values and the values predicted by the Pareto optimal model vary between 0.2% and 9.2%. 
Specifically, for the Pareto solution 1 that corresponds to the one that minimizes the errors in 
the modal frequencies (first objective function), the modal frequency errors vary from 0.2% to 
2.9%. The range of variability of these errors is smaller than the range of variability of the er-
rors observed from the beam model class. Higher modal frequency errors are observed as one 
moves towards Pareto solution 20 since such solutions are based more on minimizing the er-
rors in the modeshapes than the error in the modal frequencies. The MAC values between the 
experimental modeshapes and the modeshapes predicted by the Pareto optimal model are very 
close to one because of the small number of measured DOF available. The MAC values vary 
between 0.94 and 1.   

Comparing the results in the Tables 2 to 5 and the Figure 9 between the two model classes, 
it is evident that the Pareto optimal models from the solid element model class give better fit   
to the measured data than the fit provided by the beam element model class. This verifies that 
higher fidelity model classes tend to involve less model error and provide better fit to the 
measured quantities. 
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Relative frequency error (%) 
Pareto solution  Mode Nominal 

model 
Equally 

weighted 1 5 10 15 20 
1 -8.26 -2.86 -3.94 -2.71 -1.15 0.67 8.57 
2 -7.76 3.11 2.05 3.22 4.19 5.14 12.66 
3 -6.27 1.44 1.89 1.42 1.05 0.05 6.37 
4 -10.15 1.14 0.20 1.22 1.97 2.66 9.88 
5 -20.10 -3.70 -0.80 -4.09 -8.29 -13.45 -10.13 

 
Table 2: Relative error between experimental and beam model predicted modal frequencies.  

 
 

MAC value 
Pareto solution  Mode Nominal 

model 
Equally 

weighted 1 5 10 15 20 
1 0.996 0.998 0.997 0.997 0.997 0.997 0.997 
2 0.996 0.995 0.994 0.995 0.995 0.996 0.996 
3 0.955 0.959 0.952 0.960 0.966 0.973 0.976 
4 0.992 0.991 0.989 0.991 0.991 0.988 0.985 
5 0.985 0.973 0.973 0.973 0.976 0.978 0.979 

 
Table 3: MAC values between experimental and beam model predicted modeshapes. 

 
 

Relative frequency error (%) 
Pareto solution  Mode Nominal 

model 
Equally 

weighted 1 5 10 15 20 
1 0.11 4.41 2.88 3.89 5.53 7.65 5.38 
2 -4.21 -1.80 -1.47 -1.63 -2.29 -4.00 -9.16 
3 -2.71 -3.25 -3.61 -3.31 -3.24 -3.29 -6.34 
4 -3.06 -0.83 -0.16 -0.64 -1.24 -2.42 -6.99 
5 6.28 0.60 1.68 0.93 0.02 -0.30 -2.65 

 
Table 4: Relative error between experimental and solid model predicted modal frequencies.   

 
 

MAC value 
Pareto solution  Mode Nominal 

model 
Equally 

weighted 1 5 10 15 20 
1     0.984 0.985 0.984 0.985 0.985 0.985 0.985 
2     0.997 0.998 0.997 0.998 0.998 0.999 0.999 
3     0.934 0.951 0.943 0.949 0.954 0.959 0.961 
4     0.999 0.999 0.999 0.999 0.999 0.998 0.997 
5     0.993 0.993 0.992 0.993 0.993 0.993 0.993 

 
Table 5: MAC values between experimental and solid model predicted modeshapes.  
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5 CONCLUSIONS 

Methods for modal identification and structural model updating were used to develop high 
fidelity finite element models of the Metsovo bridge using ambient acceleration measure-
ments. A multi-objective structural identification method was used for estimating the parame-
ters of the finite element structural models based on minimizing two groups of modal 
residuals, one associated with the modal frequencies and the other with the modeshapes. The 
construction of high fidelity models consistent with the data depends on the assumptions 
made to build the mathematical model, the finite elements selected to model the different 
parts of the structure, the dicretization scheme controlling the size of the finite elements, as 
well as the parameterization scheme used to define the number and type of parameters to be 
updated by the methodology. The fidelity of two different model classes was examined: a 
simple model class consisting of a relatively small number of beam elements and a higher fi-
delity model class consisting of a large number of solid elements. The multi-objective identi-
fication method resulted in multiple Pareto optimal structural models that are consistent with 
the measured (identified) modal data and the two groups of modal residuals used to measure 
the discrepancies between the measured modal values and the modal values predicted by the 
model. A wide variety of Pareto optimal structural models was obtained that trade off the fit 
in various measured modal quantities. These Pareto optimal models are due to uncertainties 
arising from model and measurement errors. The size of observed variations in the Pareto op-
timal solutions depends on the information contained in the measured data, as well as the size 
of model and measurement errors. It has been demonstrated that higher fidelity model classes, 
tend to involve less model error, move the Pareto front towards the origin and reduce the size 
of the Pareto front in the objective space, reduce the variability of the Pareto optimal solutions, 
provide better fit to the measured quantities, and give much better predictions corresponding 
to reduced variability. 
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